1	(i)	grad AB = $\frac{1-3}{5-(-1)}$ [= -1/3]	M1	
		y-3 = their grad $(x - (-1))$ or y-1 = their grad $(x - 5)$	M1	or use of $y =$ their gradient $x + c$ with coords of A or B
				or M2 for $\frac{y-3}{1-3} = \frac{x-(-1)}{5-(-1)}$ o.e.
		y = -1/3x + 8/3 or $3y = -x + 8$ o.e isw	A1	o.e. eg $x + 3y - 8 = 0$ or $6y = 16 - 2x$ allow B3 for correct eqn www
1	(ii)	when $y = 0$, $x = 8$; when $x = 0$, y = 8/3 or ft their (i)	M1	allow $y = 8/3$ used without explanation if already seen in eqn in (i)
		$[Area =] \frac{1}{2} \times \frac{8}{3} \times 8 \text{ o.e. cao isw}$	M1	NB answer 32/3 given; allow 4 × 8/3 if first M1 earned; or M1 for $\int_{0}^{8} \left[\frac{1}{3}(8-x)\right] dx = \left[\frac{1}{3}\left(8x - \frac{1}{2}x^{2}\right)\right]_{0}^{8}$
				and M1 dep for $\frac{1}{3}(64 - 32[-0])$

1	(iii)	grad perp = $-1/\text{grad}$ AB stated, or used after their grad AB stated in this part	M1	or showing $3 \times -1/3 = -1$ if (i) is wrong, allow the first M1 here ft, provided the answer is correct ft
		midpoint [of AB] = $(2, 2)$	M1	must state 'midpoint' or show working
		y - 2 = their grad perp ($x - 2$) or ft their midpoint	M1	for M3 this must be correct, starting from grad $AB = -1/3$, and also needs correct completion to given ans $y = 3x - 4$
		<u>alt method working back from</u> <u>ans</u> :	or	mark one method or the other, to benefit of candidate, not a mixture
		grad perp = $-1/\text{grad AB}$ and showing/stating same as given line	M1	eg stating $-1/3 \times 3 = -1$
		finding into of their y = -1/3x - 8/3 and $y = 3x - 4$ is (2, 2)	M1	or showing that (2, 2) is on $y = 3x - 4$, having found (2, 2) first
		showing midpt of AB is (2, 2)	M1	[for both methods: for M3 must be fully correct]

1	(iv)	subst $x = 3$ into $y = 3x - 4$ and obtaining centre = $(3, 5)$	M1	or using $(-1-3)^2 + (3-b)^2 = (5-3)^2 + (1-b)^2$ and finding (3, 5)
		$r^{2} = (5-3)^{2} + (1-5)^{2}$ o.e. $r = \sqrt{20}$ o.e. cao	M1 A1	or $(-1-3)^2 + (3-5)^2$ or ft their centre using A or B
		eqn is $(x - 3)^2 + (y - 5)^2 = 20$ or ft their <i>r</i> and <i>y</i> -coord of centre	B1	condone $(x - 3)^2 + (y - b)^2 = r^2$ o.e. or $(x - 3)^2 + (y - \text{their } 5)^2 = r^2$ o.e. (may be seen earlier)

2 (ii)	5x + 2(5 - x) = 20 o.e.	M1	for subst or for multn to make coeffts same and appropriate addn/subtn; condone one error
	(10/3, 5/3) www isw	A2	or A1 for <i>x</i> = 10/3 and A1 for <i>y</i> = 5/3 o.e. isw; condone 3.33 or better and 1. or better A1 for (3.3, 1.7)

3	$x^2 - 5x + 7 = 3x - 10$	M1	or attempt to subst $(y + 10)/3$ for x
	$x^{2} - 8x + 17 = 0$ o.e or $y^{2} - 4y + 13 = 0$ o.e	M1	condone one error; allow M1 for $x^2 - 8x = -17$ [oe for y] only if they go on to completing square method
	use of $b^2 - 4ac$ with numbers subst (condone one error in substitution) (may be in quadratic formula)	M1	or $(x-4)^2 = 16 - 17$ or $(x-4)^2 + 1 = 0$ (condone one error)
	$b^2 - 4ac = 64 - 68 \text{ or } -4 \text{ cao}$ [or $16 - 52 \text{ or } -36 \text{ if } y \text{ used}$]	A1	or $(x-4)^2 = -1$ or $x = 4 \pm \sqrt{-1}$ [or $(y-2)^2 = -9$ or $y = 2 \pm \sqrt{-9}$]
	[< 0] so no [real] roots [so line and curve do not intersect]	A1	or conclusion from comp. square; needs to be explicit correct conclusion and correct ft; allow '< 0 so no intersection' o.e.; allow '-4 so no roots' etc
			allow A2 for full argument from sum of two squares = 0; A1 for weaker correct conclusion
			some may use the condition $b^2 < 4ac$ for no real roots; allow equivalent marks, with first A1 for 64 < 68 o.e.

4 (i)	grad CD = $\frac{5-3}{3-(-1)} \left[= \frac{2}{4} \text{ o.e.} \right]$ isw grad AB = $\frac{3-(-1)}{6-(-2)}$ or $\frac{4}{8}$ isw same gradient so parallel www	M1 M1 A1	NB needs to be obtained independently of grad AB must be explicit conclusion mentioning 'same gradient' or 'parallel' if M0, allow B1 for 'parallel lines have same gradient' o.e.
4 (ii)	$[BC^{2}=] 3^{2} + 2^{2}$ $[BC^{2}=] 13$ showing AD ² = 1 ² + 4 ² [=17] [\neq BC ²] isw	M1 A1 A1	accept $(6-3)^2 + (3-5)^2$ o.e. or [BC =] $\sqrt{13}$ or [AD =] $\sqrt{17}$ or equivalent marks for finding AD or AD ² first alt method: showing AC \neq BD – mark equivalently

4 (iii)	[BD eqn is] y = 3	M1	eg allow for 'at M, $y = 3$ ' or for 3 subst in eqn of AC
	eqn of AC is $y - 5 = 6/5 \times (x - 3)$ o.e [$y = 1.2x + 1.4$ o.e.]	M2	or M1 for grad AC = $6/5$ o.e. (accept unsimplified) and M1 for using their grad of AC with coords of A(-2, -1) or C (3, 5) in eqn of line or M1 for 'stepping' method to reach M
	M is (4/3, 3) o.e. isw	A1	allow : at M, $x = 16/12$ o.e. [eg =4/3] isw A0 for 1.3 without a fraction answer seen
4 (iv)	midpt of $BD = (5/2, 3)$ or equivalent simplified form cao	M1	or showing $BM \neq MD$ oe [BM = 14/3, MD = 7/3]
	midpt AC = $(1/2, 2)$ or equivalent simplified form cao or 'M is 2/3 of way from A to C'	M1	or showing $AM \neq MC$ or $AM^2 \neq MC^2$
	conclusion 'neither diagonal bisects the other'	A1	in these methods A1 is dependent on coords of M having been obtained in part (iii) or in this part; the coordinates of M need not be correct; it is also dependent on midpts of both AC and BD attempted, at least one correct
			alt method: show that mid point of BD does not lie on AC (M1) and vice-versa (M1), A1 for both and conclusion

5 (0, 14) and (14/4, 0) o.e. isw	4	M2 for evidence of correct use of gradient with (2, 6) eg sketch with 'stepping' or $y - 6 = -4(x - 2)$ seen or y = -4x + 14 o.e. or M1 for $y = -4x + c$ [accept any letter or number] and M1 for $6 = -4 \times 2 + c$; A1 for (0, 14) [$c = 14$ is not sufficient for A1] and A1 for (14/4, 0) o.e.; allow when $x = 0$, $y = 14$ etc isw	4
---	---	---	---

^		2	2	1.0	<u>г</u>
6		y = 3x	2	M1 for grad AB = $\frac{1-3}{6}$ or $-1/3$ o.e.	2
	ii	eqn AB is $y = -1/3 x + 3$ o.e. or ft	M1	need not be simplified; no ft from midpt used in (i); may be seen in (i) but do not give mark unless used in (ii)	
		3x = -1/3x + 3 or ft x = 9/10 or 0.9 o.e. cao	M1 A1	eliminating x or y, ft their eqns if find y first, cao for y then ft for x	
		$y = 27/10$ oe ft their $3 \times$ their x	A1	ft dep on both Ms earned	4
	iii	$\left(\frac{9}{10}\right)^2 (1+3^2)$ o.e	2	or square root of this; M1 for $(0)^2 (27)^2$	
		(10) (10) (10) (10) (10) (10) (10) (10) (10)		$\left(\frac{9}{10}\right)^2 + \left(\frac{27}{10}\right)^2$ or 0.81 + 7.29 soi or ft	
				their coords (inc midpt) <u>or</u> M1 for distance = $3 \cos \theta$ and tan θ = 3 and M1 for showing	
				$\sin\theta = \frac{3}{\sqrt{10}}$ and completion	2
	iv	$2\sqrt{10}$	2	1 for $6^2 + 2^2$ or 40 or square roots of these	2
	v	9 www or ft their $a\sqrt{10}$	2	M1 for $\frac{1}{2} \times 3 \times 6$ or	
				$\frac{1}{2}$ × their $2\sqrt{10}$ × $\frac{9}{10}\sqrt{10}$	2
					12