1 (i)	$\begin{aligned} & \operatorname{grad} \mathrm{AB}=\frac{1-3}{5-(-1)}[=-1 / 3] \\ & y-3=\text { their } \operatorname{grad}(x-(-1)) \text { or } \\ & y-1=\text { their } \operatorname{grad}(x-5) \end{aligned}$ $y=-1 / 3 x+8 / 3 \text { or } 3 y=-x+8 \text { o.e }$ isw	M1 M1 A1	or use of $y=$ their gradient $x+c$ with coords of A or B or M2 for $\frac{y-3}{1-3}=\frac{x-(-1)}{5-(-1)}$ o.e. $\text { o.e. eg } x+3 y-8=0 \text { or } 6 y=16-$ $2 x$ allow B3 for correct eqn www
1 (ii)	when $y=0, x=8$; when $x=0$, $y=8 / 3$ or ft their (i) [Area $=$] $1 / 2 \times 8 / 3 \times 8$ o.e. cao isw	M1 M1	allow $y=8 / 3$ used without explanation if already seen in eqn in (i) NB answer 32/3 given; allow $4 \times 8 / 3$ if first M1 earned; or M1 for $\int_{0}^{8}\left[\frac{1}{3}(8-x)\right] \mathrm{d} x=\left[\frac{1}{3}\left(8 x-\frac{1}{2} x^{2}\right)\right]_{0}^{8}$ and M1 dep for $\frac{1}{3}(64-32[-0])$

1 (iii)	grad perp $=-1 /$ grad $A B$ stated, or used after their grad $A B$ stated in this part midpoint $[$ of AB$]=(2,2)$ $y-2=$ their grad perp $(x-2)$ or ft their midpoint alt method working back from ans: grad perp $=-1 /$ grad $A B$ and showing/stating same as given line finding intn of their $y=-1 / 3 x-8 / 3$ and $y=3 x-4$ is $(2,2)$ showing midpt of AB is $(2,2)$	M1 M1 M1 or M1 M1 M1	or showing $3 \times-1 / 3=-1$ if (i) is wrong, allow the first M1 here ft , provided the answer is correct ft must state 'midpoint' or show working for M3 this must be correct, starting from grad $A B=-1 / 3$, and also needs correct completion to given ans $y=3 x-4$ mark one method or the other, to benefit of candidate, not a mixture eg stating $-1 / 3 \times 3=-1$ or showing that $(2,2)$ is on $y=3 x-$ 4 , having found $(2,2)$ first [for both methods: for M3 must be fully correct]

1 (iv)	subst $x=3$ into $y=3 x-4$ and obtaining centre $=(3,5)$ $r^{2}=(5-3)^{2}+(1-5)^{2}$ o.e. $r=\sqrt{20}$ o.e. cao eqn is $(x-3)^{2}+(y-5)^{2}=20$ or ft their r and y-coord of centre	M1	B1or using $(-1-3)^{2}+(3-b)^{2}=(5-$ $3)^{2}+(1-b)^{2}$ and finding $(3,5)$ or $(-1-3)^{2}+(3-5)^{2}$ or ft their centre using A or B
A1	condone $(x-3)^{2}+(y-b)^{2}=r^{2}$ o.e. or $(x-3)^{2}+(y-\text { their })^{2}=r^{2}$ o.e. (may be seen earlier)		

2 (ii)	$5 x+2(5-x)=20$ o.e.	M1	for subst or for multn to make coeffts same and appropriate addn/subtn; condone one error
(10/3, $5 / 3)$ www isw	A2	or A1 for $x=10 / 3$ and $\mathbf{A 1}$ for $y=5 / 3$ o.e. isw; condone 3.33 or better and 1. or better A1 for (3.3, 1.7)	

4 (i)	$\operatorname{grad} \mathrm{CD}=\frac{5-3}{3-(-1)}\left[=\frac{2}{4}\right.$ o.e. $]$ isw $\operatorname{grad} \mathrm{AB}=\frac{3-(-1)}{6-(-2)}$ or $\frac{4}{8}$ isw same gradient so parallel www	M1 M1 A1	NB needs to be obtained independently of grad AB must be explicit conclusion mentioning 'same gradient' or 'parallel' if M0, allow B1 for 'parallel lines have same gradient' o.e.
4 (ii)	$\begin{aligned} & {\left[\mathrm{BC}^{2}=\right] 3^{2}+2^{2}} \\ & {\left[\mathrm{BC}^{2}=\right] 13} \\ & \text { showing } \mathrm{AD}^{2}=1^{2}+4^{2}[=17]\left[\neq \mathrm{BC}^{2}\right] \\ & \text { isw } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { accept }(6-3)^{2}+(3-5)^{2} \text { o.e. } \\ & \text { or }[\mathrm{BC}=] \sqrt{13} \\ & \text { or }[\mathrm{AD}=] \sqrt{17} \end{aligned}$ or equivalent marks for finding AD or AD^{2} first alt method: showing $\mathrm{AC} \neq \mathrm{BD}$ - mark equivalently

4 (iii)	$\text { [BD eqn is] } y=3$ eqn of AC is $y-5=6 / 5 \times(x-3)$ o.e $[y=1.2 x+1.4 \text { o.e. }]$ M is (4/3, 3) o.e. isw	M1 M2 A1	eg allow for 'at M, $y=3$ ' or for 3 subst in eqn of AC or M1 for grad AC $=6 / 5$ o.e. (accept unsimplified) and M1 for using their grad of AC with coords of A($-2,-1$) or C $(3,5)$ in eqn of line or $\mathbf{M 1}$ for 'stepping' method to reach M allow : at $\mathrm{M}, x=16 / 12$ o.e. $[\mathrm{eg}=4 / 3$] isw A0 for 1.3 without a fraction answer seen
4 (iv)	midpt of $\mathrm{BD}=(5 / 2,3)$ or equivalent simplified form cao midpt $\mathrm{AC}=(1 / 2,2)$ or equivalent simplified form cao or ' M is $2 / 3$ of way from A to C ' conclusion 'neither diagonal bisects the other'	M1 M1 A1	or showing $\mathrm{BM} \neq \mathrm{MD}$ oe $[B M=14 / 3, M D=7 / 3]$ or showing $\mathrm{AM} \neq \mathrm{MC}$ or $\mathrm{AM}^{2} \neq \mathrm{MC}^{2}$ in these methods A 1 is dependent on coords of M having been obtained in part (iii) or in this part; the coordinates of M need not be correct; it is also dependent on midpts of both AC and BD attempted, at least one correct alt method: show that mid point of BD does not lie on AC (M1) and vice-versa (M1), A1 for both and conclusion

5	$(0,14)$ and $(14 / 4,0)$ o.e. isw	4	M2 for evidence of correct use of gradient with $(2,6)$ eg sketch with 'stepping' or $y-6=-4(x-2)$ seen or y $=-4 x+14$ o.e. or M1 for $y=-4 x+c$ [accept any letter or number] and M1 for $6=-4 \times 2+c ;$ A1 for $(0,14)[c=14$ is not sufficient for A1] and A1 for $(14 / 4,0)$ o.e.; allow when $x=0, y=14$ etc isw

